A Method for Constructing Supervised Topic Model Based on Term Frequency-Inverse Topic Frequency
نویسندگان
چکیده
منابع مشابه
A Supervised Method for Constructing Sentiment Lexicon in Persian Language
Due to the increasing growth of digital content on the internet and social media, sentiment analysis problem is one of the emerging fields. This problem deals with information extraction and knowledge discovery from textual data using natural language processing has attracted the attention of many researchers. Construction of sentiment lexicon as a valuable language resource is a one of the imp...
متن کاملTopic Model Analysis of Metaphor Frequency for Psycholinguistic Stimuli
Psycholinguistic studies of metaphor processing must control their stimuli not just for word frequency but also for the frequency with which a term is used metaphorically. Thus, we consider the task of metaphor frequency estimation, which predicts how often target words will be used metaphorically. We develop metaphor classifiers which represent metaphorical domains through Latent Dirichlet All...
متن کاملThe Inverse Regression Topic Model
Taddy (2013) proposed multinomial inverse regression (MNIR) as a new model of annotated text based on the influence of metadata and response variables on the distribution of words in a document. While effective, MNIR has no way to exploit structure in the corpus to improve its predictions or facilitate exploratory data analysis. On the other hand, traditional probabilistic topic models (like la...
متن کاملSSHLDA: A Semi-Supervised Hierarchical Topic Model
Supervised hierarchical topic modeling and unsupervised hierarchical topic modeling are usually used to obtain hierarchical topics, such as hLLDA and hLDA. Supervised hierarchical topic modeling makes heavy use of the information from observed hierarchical labels, but cannot explore new topics; while unsupervised hierarchical topic modeling is able to detect automatically new topics in the data...
متن کاملEHLLDA: A Supervised Hierarchical Topic Model
In this paper, we consider the problem of modeling hierarchical labeled data – such as Web pages and their placement in hierarchical directories. The state-of-the-art model, hierarchical Labeled LDA (hLLDA), assumes that each child of a non-leaf label has equal importance, and that a document in the corpus cannot locate in a non-leaf node. However, in most cases, these assumptions do not meet t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2019
ISSN: 2073-8994
DOI: 10.3390/sym11121486